Integration of vibrotactile signals for whisker-related perception in rats is governed by short time constants: comparison of neurometric and psychometric detection performance.
نویسندگان
چکیده
Rats explore environments by sweeping their whiskers across objects and surfaces. Both sensor movement and repetitive sweeping typical for this behavior require that vibrotactile signals are integrated over time. While temporal integration properties of neurons along the whisker somatosensory pathway have been studied extensively, the consequences for behavior are unknown. Here, we investigate the ability of head-fixed rats to integrate information over time for the detection of near-threshold pulsatile deflection sequences applied to a single whisker. Psychometric detection performance was assessed with whisker stimuli composed of different numbers of pulses (1-31) delivered at varying frequencies (10, 20, 100 Hz). Detection performance indeed improved with increasing number and frequency of pulses, albeit this improvement was much lower than predicted by probabilistic combination, suggesting highly sublinear integration of pulses. This behavioral observation was reflected in the firing properties of concomitantly recorded barrel cortex neurons, which showed substantial response adaptation to repetitive whisker deflection. To estimate the integration time with which barrel cortex neuronal activity must be read out to match behavior, we constructed a model monitoring spiking activity of simulated neuronal pools, where spike trains were channeled through a leaky integrator with exponential decay. Detection was accomplished by simple threshold crossings. This simple model gave an excellent match of neurometric and psychometric data at surprisingly small time constants tau of 5-8 ms, thus limiting integration largely to <25 ms. This result carries important implications regarding sensory processing for whisker-mediated perception.
منابع مشابه
Discrimination of Vibrotactile Stimuli in the Rat Whisker System: Behavior and Neurometrics
Understanding the neural code underlying perception requires the mapping of physical stimulus parameters to both psychophysical decisions and neuronal responses. Here, we employed a novel psychophysical task in head-fixed rats to measure discriminability of vibrotactile whisker deflections. Rats could discriminate 90 Hz from 60 Hz pulsatile stimuli if stimulus intensity covaried with frequency....
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملProper integration time of polarization signals of internetwork regions using Sunrise/IMaX data
Distribution of magnetic fields in the quiet-Sun internetwork areas has been affected by weak polarization (in particular Stokes Q and U) signals. To improve the signal-to-noise ratio (SNR) of the weak polarization signals, several approaches, including temporal integrations, have been proposed in the literature. In this study, we aim to investigate a proper temporal-integration time with which...
متن کاملTwo psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents.
The rat whisker system has evolved into in an excellent model system for sensory processing from the periphery to cortical stages. However, to elucidate how sensory processing finally relates to percepts, methods to assess psychophysical performance pertaining to precise stimulus kinematics are needed. Here, we present a head-fixed, behaving rat preparation that allowed us to measure detectabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2010